COURSE DESCRIPTION CARD - SYLLABUS

Course name

Mathematics

Course

Field of study
Materials Engineering
Area of study (specialization)
-
Level of study
First-cycle studies
Form of study
full-time

Number of hours

Lecture

Laboratory classes

Other (e.g. online)

45
Tutorials
30
Number of credit points
7
Lecturers

Responsible for the course/lecturer:

dr Marek Adamczak
email: marek.adamczak@put.poznan.pl
tel. 61-665-2687
Faculty of Control, Robotics and Electrical
Engineering
ul. Piotrowo 3A, 60-965 Poznań

Prerequisites

Knowledge: Student has knowledge of mathematics at the secondary school level.
Skills: Student is able to solve problems and has the ability to use mathematical tools to solve tasks in the field of secondary school.

Social competencies: The student understands the need for continuous improvement of competences (language, professional and social) and knows the importance of higher mathematics methods in the description of engineering and technical issues. Can independently search for information in the literature.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective
The main aim is the understanding of basic notions and methods theory in order to apply them to solving technical problems.

Course-related learning outcomes

Knowledge

1. The student has knowledge of mathematics necessary to understand and describe the basic issues related to materials engineering (containing: elements of linear algebra and analytic geometry, mathematical analysis).
2. The student has knowledge of mathematics necessary to use the mathematical apparatus to describe technical issues.
3. The student has knowledge of the use of appropriate computational techniques, supporting the work of an engineer, while understanding certain limitations.

Skills

1. The student has the ability to self-education using modern teaching tools, such as: remote lectures, websites, didactic programs, e-books.
2. The student is able to obtain information from literature, the Internet and other sources. It is able to integrate obtained information, interpret and draw conclusions from them.
3. The student knows how to use formulas and tables, technical and economic calculations.

Social competences

1. The student is aware of the importance of compliance with the principles of professional ethics.
2. The student understands the need for critical knowledge assessment and continuous education. It is able to think and act in a creative and enterprising way.
3. Student is aware of the social role of a technical university graduate (understands the need to formulate and provide the public with information and opinions on technical achievements and other aspects of engineering activities).

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Lectures: written / oral exam in theory and tasks.
Classes: evaluation of written tests during the semester and the direct activity during the classes.
Getting extra points related with activity (presentations of examples of applications of mathematics, use of literature, discussion of problems, presenting reports concerning applications of the theory and diligence of the study).

GRADING SCALE (lectures and classes):

Programme content

The update 2022/2023.
Issues:

An overview of the functions of one independent variable. Trigonometric and cyclometric functions. Trigonometric identities. Exponential and logarithmic equations and inequalities.

Complex numbers and their applications - description and different forms (algebraic, trigonometric, exponential); geometric interpretation; activities in a set of complex numbers (Moivre's formula, complex element); polynomials (solving polynomial equations, the basic theorem of algebra); collections on the complex plane.

Numerical sequences. The number of Euler.
Limits of functions (at point, left-sided, right-handed, incorrect, in infinite). Continuity of functions. Asymptotes.

Derivative of the function of one independent variable.
The de L'Hospital rule.
Monotonicity and convexity of functions (using the differential calculus). Testing (course of variation) of the function.

Derivative applications (optimization tasks).
Indefinite integral - definition of indefinite integral and primary function, properties, basic formulas, integration by substitution and by parts, examples. Integrals of rational functions and selected integrals of irrational functions and trigonometric functions. Reduction formulas.

Definite integral - definition, geometrical interpretation, Newton-Leibnitz formula, properties, basic formulas, integration by substitution and parts. Examples and applications (flat area, curve arc length, lateral area and volume of a solid of revolution).

Improper integral - types, examples.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Matrix calculus - definition of matrices, their types and arithmetic; determinant of the square matrix and its properties (Laplace theorem, Sarrus scheme, calculating the determinant by the elementary operations method using the Laplace development); inverse matrix and methods of finding it; row of the matrix and its calculation.

Systems of linear equations (matrix notation, Cramer's theorem, Kronecker-Capelli theorem, matrix method of Gauss elimination).

Elements of analytic geometry in three-dimensional space - vectors, actions on vectors (addition/subtraction, multiplication by number, scalar product, vector product, mixed product of ordered three of vectors) and their applications.

Numeric series - description and examples; convergence criteria.

Teaching methods

1) Lectures:

- interactive lecture with questions to students or specific students,
- using partially a multimedia presentation (e.g. examples, animations),
- theory presented in connection with the current knowledge of students,
- presenting a new topic preceded by a reminder of related content known to students from the school,
- taking into account various aspects of the issues presented (economic, ecological, social),
- student activity is taken into account during the course of the assessment.

2) Classes:

- solving sample tasks on the blackboard,
- initiate discussion on solutions,
- homework / additional tasks.

Bibliography

Basic

1. M. Gewert, Z. Skoczylas, Analiza matematyczna 1, Oficyna Wydawnicza GiS, Wrocław 2005.
2. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1, Oficyna Wydawnicza GiS, Wrocław 2007.
3. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz.1, cz.2, Wydawnictwo naukowe PWN, Warszawa 2010.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Additional

1. I. Foltyńska, Z. Ratajczak, Z. Szafrański: Matematyka dla studentów uczelni technicznych, cz.1, cz.2, cz.3, Wydawnictwo Politechniki Poznańskiej, Poznań 2004.
2. J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej, Wydawnictwo WNT, Warszawa 1996.

Breakdown of average student's workload

	Hours	ECTS
Total workload	192	7,0
Classes requiring direct contact with the teacher	82	3,0
Student's own work (literature studies, preparation for classes, preparation for tests/passing, performing additional tasks)		

[^0]
[^0]: ${ }^{1}$ delete or add other activities as appropriate

